# 希土類硝酸水酸化物の結晶相を決定するパラメータの検討

Investigation of factor determining crystal phases of rare earth hydroxide nitrates

# (愛媛大) 〇佐藤文哉、高橋亮治

(Ehime Univ.) Fumiya Sato and Ryoji Takahashi

#### Introduction

#### 希土類硝酸水酸化物

組成:M<sub>a</sub>O<sub>b</sub>(OH)<sub>c</sub>(NO<sub>3</sub>)<sub>d</sub>·nH<sub>2</sub>O (M:希土類元素)

合成方法:M(NO3)3を塩基性条件で水熱処理

1. T. Hara et al., 第112回触媒討論会 (2013) 2J01. 2. F. Sato et al., Chem. Lett. 41 (2012) 593. ※焼成品を利用 用途:触媒としての報告あり

結晶構造:六方晶( $P6_3/m$ )、単斜晶( $P2_1$ )、層状(空間群不明)





Crystal structure of Sm(OH)<sub>3</sub>

Crystal structure of Y<sub>4</sub>O(OH)<sub>9</sub>NO<sub>3</sub>

XRD patterns of layer structure samples  $(Y_2(OH)_{5.14}(NO_3)_{0.86} \cdot H_2O$ -like)

佐藤、高橋、山田、日本セラミックス協会 第27回秋季シンポジウム (2014) 1F05.

#### 硝酸水酸化イットリウム

結晶相は水熱処理のpHおよび温度に従い変化

N.Li, K. Yanagisawa, Journal of Solid State Chemistry 181 (2008) 1738-1743.

#### 7希土類種の硝酸水酸化物を調製 - 結晶相・粒子形態を調査

|      | Crystal phase (XRD) |    |    |   |     |    |    |    | Morphology (SEM) |    |   |    |    |    |  |  |
|------|---------------------|----|----|---|-----|----|----|----|------------------|----|---|----|----|----|--|--|
|      | Yb                  | Er | Но | Υ | Dy  | Gd | Sm | Yb | Er               | Но | Υ | Dy | Gd | Sm |  |  |
| pH 7 | М                   | L  | L  | L | L   | L  | Н  | R  | Р                | Р  | Р | Р  | В  | R  |  |  |
| pH 8 | М                   | М  | М  | L | L   | Н  | Н  | R  | R                | R  | Р | Р  | R  | R  |  |  |
| pH 9 | М                   | М  | М  | М | H+M | Н  | Н  | R  | R                | R  | R | R  | R  | R  |  |  |

M, monoclinic; L, layer structure; H, hexagonal. R, rod; P, plate; B, belt.

粒子形態と結晶相に対応がある 結晶相の決定要因の解明が粒子形態の制御に繋がる?

佐藤、高橋、山田、日本セラミックス協会 第27回秋季シンポジウム (2014) 1F05.

#### **Purpose**

結晶相を決定づけるパラメータとして下記を検討 希土類種(カチオン半径)、pH、乾燥条件

#### **Experimental**



## XRD profiles

Dy-7

Gd-7



#### SEM images & CHN analysis

3種類の粒子形態を確認



#### 組成は既報のイットリウム塩から下記の通り予想

Hexagonal:  $M(OH)_3$ 

Layer :  $M_2(OH)_{5.14}(NO_3)_{0.86} \cdot H_2O$ 

Monoclinic :  $M_4(OH)_9NO_3$ 

#### CHN分析結果

Hexagonal:測定した全試料でN含有量が0.5wt.%以下 Pr-9 (0.12wt.%), Tb-9 (0.13wt.%), Sm-7, Sm-9, Gd-9 Layer & monoclinic: N含有量の実測値と予想値が近い

Er-7 (実測値: 2.41wt.%、予想値: 2.53wt.%) Ho-9 (実測値: 1.56 wt.%、予想値: 1.57wt.%)

#### Crystal phases and morphologies

|    | Small — |       |       |       |       |                |       | Cation radius                    |       |                |                |                |                |                | Large          |  |  |
|----|---------|-------|-------|-------|-------|----------------|-------|----------------------------------|-------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|
|    | рН      | Lu    | Yb    | Tm    | Ľ     | Но             | Y     | Dy                               | Tb    | Gd             | E              | Sm             | Nd             | Pr             | La             |  |  |
| X  | 7       | $M_4$ | $M_4$ | $M_4$ | $M_2$ | M <sub>2</sub> | $M_2$ | $M_2$                            | $M_2$ | $M_2$          | $M_1$ $M_2$    | M <sub>1</sub> |                |                |                |  |  |
| R  | 8       | $M_4$ | $M_4$ | $M_4$ | $M_4$ | $M_4$          | $M_2$ | $M_2$                            | $M_2$ | M <sub>1</sub> | M <sub>1</sub> | $M_1$          | M <sub>1</sub> | M <sub>1</sub> | M <sub>1</sub> |  |  |
| D  | 9       | $M_4$ | $M_4$ | $M_4$ | $M_4$ | $M_4$          | $M_4$ | M <sub>1</sub><br>M <sub>4</sub> | $M_1$ | M <sub>1</sub> | M <sub>1</sub> | $M_1$          | M <sub>1</sub> | $M_1$          | M <sub>1</sub> |  |  |
| 2  | 7       | R     | R     | В     | Р     | Р              | Р     | Р                                | В     | В              | В              | R              |                |                |                |  |  |
| SE | 8       | R     | R     | R     | R     | R              | Р     | Р                                | Р     | R              | R              | R              | R              | R              | R              |  |  |
| M  | 9       | R     | R     | R     | R     | R              | R     | R                                | R     | R              | R              | R              | R              | R              | R              |  |  |

| Phase                       | Composition                              | Morphology     | NO <sub>3</sub> -/M |
|-----------------------------|------------------------------------------|----------------|---------------------|
| M <sub>1</sub> (Hexagonal)  | M(OH) <sub>3</sub>                       | Rod            | 0                   |
| M <sub>2</sub> (Layer)      | $M_2(OH)_{5.14}(NO_3)_{0.86} \cdot H_2O$ | Plate and belt | 0.43                |
| M <sub>4</sub> (Monoclinic) | $M_4O(OH)_9NO_3$                         | Rod            | 0.25                |

| 8           | R                | R          | R                     | R                                    | R                                                   | Р                                               | Р                                              | Р                                                | R                                                    | R                                                         | R                                       | R                                       | R                                       | R                                       |  |
|-------------|------------------|------------|-----------------------|--------------------------------------|-----------------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--|
| 9           | R                | R          | R                     | R                                    | R                                                   | R                                               | R                                              | R                                                | R                                                    | R                                                         | R                                       | R                                       | R                                       | R                                       |  |
|             |                  |            |                       |                                      |                                                     |                                                 |                                                |                                                  |                                                      |                                                           |                                         |                                         |                                         |                                         |  |
| Phase Compo |                  |            |                       |                                      |                                                     | nposition                                       |                                                |                                                  |                                                      |                                                           | Morphology                              |                                         |                                         |                                         |  |
| (He         | kago             | nal)       | M(0                   | M(OH) <sub>3</sub>                   |                                                     |                                                 |                                                |                                                  |                                                      | d                                                         |                                         | 0                                       |                                         |                                         |  |
| (Lay        | er)              |            | M <sub>2</sub> (      | $M_2(OH)_{5.14}(NO_3)_{0.86} - H_2O$ |                                                     |                                                 |                                                |                                                  |                                                      | Plate and belt                                            |                                         |                                         |                                         | 0.43                                    |  |
|             | 9<br>ase<br>(He) | 9 R<br>ase | 9 R R ase (Hexagonal) | 9 R R R  ase Cor (Hexagonal) M(0)    | 9 R R R R  ase Compo (Hexagonal) M(OH) <sub>3</sub> | 9 R R R R R  ase (Hexagonal) M(OH) <sub>3</sub> | 9 R R R R R R R (Hexagonal) M(OH) <sub>3</sub> | 9 R R R R R R R R (Hexagonal) M(OH) <sub>3</sub> | 9 R R R R R R R R R R (Hexagonal) M(OH) <sub>3</sub> | 9 R R R R R R R R R R R (Hexagonal) M(OH) <sub>3</sub> Ro | 9 R R R R R R R R R R R R R R R R R R R | 9 R R R R R R R R R R R R R R R R R R R | 9 R R R R R R R R R R R R R R R R R R R | 9 R R R R R R R R R R R R R R R R R R R |  |

## M<sub>2</sub>相の乾燥に対する安定性



#### TG-DTA

 $Y_2(OH)_{5.14}(NO_3)_{0.86} \cdot H_2O \rightarrow Y_2(OH)_{5.14}(NO_3)_{0.86}$ 残重量(理論値):94.6%

乾燥により水の脱離が起きているとみられる

**XRD** 

乾燥温度を上げると面間隔が縮まる

層間の水が脱離し、層間隔が縮小と推測

#### **Conclusions**

希土類硝酸水酸化物の結晶相について下記の知見を得た

- ●結晶相はカチオン半径により系統的に変化する
- 低pHほどM₂相が得られるカチオン半径領域が広い
- M₂相は乾燥条件により面間隔、結晶性が変化する
  - **一**層間に含まれる水による影響?

### <u>Acknowledgement</u>

本研究は(公財)日本板硝子材料工学助成会の助成を受け実施した。 本研究で愛媛大学学術支援センターの機器を利用した。