希土類硝酸水酸化物の結晶相を決定するパラメータの検討

Investigation of factor determining crystal phases of rare earth hydroxide nitrates

(愛媛大) 〇佐藤文哉、高橋亮治 (Ehime Univ.) Fumiya Sato and Ryoji Takahashi

Introduction

希土類硝酸水酸化物

組成: $M_aO_b(OH)_c(NO_3)_d \cdot nH_2O$ (M:希土類元素)

合成方法: $M(NO_3)_3$ を塩基性条件で水熱処理 用途:触媒としての報告あり ,第112回触媒討論会 (2013) 2J01 1. T. Hara et al., 第112回触媒討論会 (2013) 2J01. 2. F. Sato et al., Chem. Lett. 41 (2012) 593. ※焼成品を利用 結晶構造:六方晶($P6_3/m$)、単斜晶($P2_1$)、層状(空間群不明)

硝酸水酸化イットリウム

```
結晶相は水熱処理のpHおよび温度に従い変化
```

N.Li, K. Yanagisawa, Journal of Solid State Chemistry 181 (2008) 1738-1743.

7希土類種の硝酸水酸化物を調製 🔶 結晶相・粒子形態を調査

		С	rystal	phase	e (XRD	D)		Morphology (SEM)						
	Yb	Er	Ho	Y	Dy	Gd	Sm	Yb	Er	Ho	Y	Dy	Gd	Sm
pH 7	М	L	L	L	L	L	Н	R	Р	Р	Р	Р	В	R
pH 8	М	М	Μ	L	L	Н	Н	R	R	R	Р	Р	R	R
pH 9	М	Μ	М	М	H+M	Н	Н	R	R	R	R	R	R	R

	 ・ ホーボーデ ・ 京田小ボーデ ・ 乾燥 (110°C) 希土類硝酸水酸化物 ・ キャラクタリゼーション XRD FE-SEM TG-DTA 元素分析(CHN) 							/ = :	ン 		(Lu-7 0 10 20 30 40 50 60 2θ/ degree JCPDSカードから希土類 Y ₂ (OH) _{5.14} (NO ₃) _{0.86} ·H ₂ Oと類似	Lu-9 10 20 30 40 50 60 2θ/ degree 水酸化物と帰属可能 Y ₄ O(OH) ₉ NO ₃ と類似	CHN分析結果 Hexagonal:測定した全試料でN含有量が0.5wt.%以下 Pr-9 (0.12wt.%), Tb-9 (0.13wt.%), Sm-7, Sm-9, Gd-9 Layer & monoclinic:N含有量の実測値と予想値が近い Er-7 (実測値:2.41wt.%、予想値:2.53wt.%) Ho-9 (実測値:1.56 wt.%、予想値:1.57wt.%)								
<u>Cr</u>	Crystal phases and morphologies												<u> 95</u>									
	Small Cation radius Large											0			Large							
	рн	LU	4 M	Im	Er	HO	YI	Jy	dl	Ga	EU	Sm	INC	Pr								
x	7	M ₄	M ₄	M ₄	M ₂	M ₂	M ₂	M ₂	M ₂	M ₂	M_2	M ₁	_		—							
R	8	M ₄	M ₄	M ₄	M ₄	M ₄	M ₂	M ₂	M ₂	M ₁	M ₁	M ₁	M ₁	M ₁	M ₁							
	9	M ₄	M ₄	M ₄	M ₄	M ₄	M ₄	M ₁ M ₄	M ₁	M ₁	M ₁	M ₁	M ₁	M ₁	M ₁							
	7	R	R	В	Р	Р	Р	Р	В	В	В	R	_	_	_							
	8	R	R	R	R	R	Р	Р	Р	R	R	R	R	R	R							
	9	R	R	R	R	R	R	R	R	R	R	R	R	R	R							
Ρ	hase	Composition						Morphology NO ₃ ⁻ /M														
M	M ₁ (Hexagonal)				M(OH) ₃					Rod 0												
M	M_2 (Layer) M_2 (OH) _{5.14} (NO ₃) _{0.86} · H ₂ O Plate and belt 0.43						5															
M	M_4 (Monoclinic) $M_4O(OH)_9NO_3$ Rod 0.25																					

<u>M₂相の乾燥に対する安定性</u>

Conclusions

希土類硝酸水酸化物の結晶相について下記の知見を得た し
結晶相はカチオン半径により系統的に変化する ● 低pHほどM₂相が得られるカチオン半径領域が広い ● M₂相は乾燥条件により面間隔、結晶性が変化する 一層間に含まれる水による影響?

<u>Acknowledgement</u>

本研究は(公財)日本板硝子材料工学助成会の助成を受け実施した。 本研究で愛媛大学学術支援センターの機器を利用した。